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INVESTIGATION OF COMPLEX ANGLE PROCESSING
TO REDUCE INDUCED ANGLE POINTING ERRORS

David G. Burks and Edward R. Graf

Abstract

This work is an analysis of the effect of a tangent ogive radome on
the pointing accuracy of a monopulse radar that employs an aperture an-
tenna. The radar is assumed to be operating in the receive mode and
the incident fields at the antenna are found by a ray-tracing procedure.
Rays that enter the antenna aperture by direct transmission through the
radome and by single reflection from the radome interior are considered.
The theory of monopulse radar and the transmission and reflection
properties of planar dielectric slabs are presented first to form a back-
ground for the radome analysis.

Two orthogonal polarization states which can be combined to pro-
duce an arbitrarily polarized incident field are considered. The anten-
na can be scanned in two angular directions and radar pointing error is
presented for both these angles as a function of antenna scan angle
and polarization of the incident field. Throughout the work, compari-
son of two different radome wall designs is made in order to both il-
lustrate the analytical techniques and to show the engineering trade-
offs in radome design.

A method that can be used to compensate for radome-induced error
is presented. Complex angle processing for the purpose of pointing

angle reduction was investigated based upon the simulation described




above. It was concluded that the complex angle could not be uniquely
related to radar pointing error, but rather appeared to correlate

with phase-front curvature. This quantity is not considered useful for

pointing error correction.
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I. INTRODUCTION

The Institute of Electrical and Electronics Engineers gives
the following definition [1]

RADOME. An enclosure for protecting an antenna from

the harmful effects of its physical environment, gen- !

erally intended to leave the electrical performance

of the antenna unaffected.
Skolnik [2] divides radomes into these two major classifications,
based on application and geometrical constraints: ground-based
radomes and air-borne radomes. This study deals with radomes used
on high-speed missiles which require a high degree of streamlining.
Streamlining places severe constraints on the geometry of the radome

and the radome material, which must withstand the temperature, pres-

sure, and possibly rain or lightning encountered during high-speed
flight. The antenna considered here is part of a radar system
that provides information concerning target position and velocity
to the guidance system of the missile. The radome may be considered
a2 "necessary evil" because it has no beneficial effects on the per-
formance of the radar but it is essential for protection of the antenna
and for good flight characteristics of the missile. Of particular
interest is the angular pointing error of the radar. This study is
addressed mainly at that problem.

Airborne radomes first had extensive application on aircraft
in World War II. Many design criteria and construction requirements

1




2

were formulated during this period. Much of this work in the
United States and England is summarized in a volume of the MIT
Radiation Laboratory Series [3]. In another volume [4] of the

same series, radomes are discussed in conjunction with antenna in-
stallation problems. These two works 1ist the essential character-
ics of radome behavior and contain references to most of the war-
time work.

A1l early radome work relies on ray tracing to obtain the electro-
magnetic energy reflected from or transmitted through the radome wall.
This method was extended by Tricoles [5] who treated the receiving
problem by tracing rays through the radome to a receiving aperture,
but then obtained the antenna voltage by an empirical method based on
aperture response to Huygen's sources. In a later paper [6] he used
the same methods to obtain the transmittance of an axially symmetric
missile radome. Each of these papers indicate that scattering from
the radome vertex may be responsible for some of the measured radome
behavior, and the second paper includes a crude approximation of this
scattering.

Analysis of radome effects on antenna performance has been carried
out for both transmitting and receiving antennas. The most frequently
. calculated antenna parameter in radome analysis is the far-field anten-
na pattern. Paris [7] has presented a technique for determining the
transmitting antenna pattern of a horn antenna covered by an aircraft
radome. His procedure is based on calculating the near-fields incident

on the radome by using a previously developed aperture integration pro-

gram [8], treating the incident fields as local plane waves, applying




plane-wave transmission coefficients, and then treating the fields ex-
terior to the radome as equivalent sources of the radiated fields. A
similar approacn is taken by Wu and Rudduck [9] to obtain transmitting
boresight errors for a circular aperture behind an ogive radome. They
simplify the determination of the near fields incident on the radome
; by expressing these fields in a plane wave spectrum. For the uniformly
illuminated circular aperture they consider, this results in an ana-
lytic expression for the near fields. |
Since virtually all radome work has military application, few
results of development and testing appear in the open literature.
Most dissemination of radome information has been through a series
of symposia begun in the mid-1950's under the title of either Radome
Symposium or Symposium on Electromagnetic Windows. These symposia

F were originally sponsored jointly by Ohio State University and the

U.S. Air Force and later by the Georgia Institute of Technology and the
U.S. Air Force. In recent years the Georgia Institute of Technology
has been the host and sponsor of the symposium. The proceedings of
these symposia provide an indication of the work performed in the ra-
dome area, but due to the unavailability of the proceedings, and the
abbreviated nature of the papers in them, they provide little concrete
information for other researchers to draw upon.

The importance of radomes in both radar and antenna systems
] is accented by the inclusion of full chapters on radome design and
; characteristics in a major radar handbook [10] and a major antenna

handbook [11].
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The most extensive treatment of radomes is contained in the two

volume report edited by Tice and Walton [12]. This report was intend-

ed to survey and summarize all of the radone work done up to that

time. The report covers all aspects of radome design and testing,

both electrical and-mechanical. An extensive bibliography is in-

cluded with references to both the open and classified literature.

It is unfortunate that these volumes are not widely available due to @

their restricted circulation. |
More recently, an entire handbook has been devoted to radome

research [13]. This volume mainly treats materials, but there are

chapters on electrical and operational considerations and a historical

introduction. A report on radome design has also been prepared for

NATO [14]. This report contains an excellent summary of how environ-
mental, structural, electrical, and material considerations are com-
bined in successful radome design. A subsequent NATO report [15]
gives consideration to radome materials.

Simply stated, the radome problem is to find the voltage in the
antenna feed line wher a plane wave is incident on the radome. An exact
solution of the radome problem is extremely difficult. The reasons for
this are the complicated geometry of the problem, the boundary condi-
tions which are imposed on the fields, and the large size of the struc-
tures as measured in wavelengths at the operating frequency.

The response of an aperture antenna may be determined from
the fields incident on the antenna and the known characteristics ?

of the antenna. The radome problem can thus be considered as that

of finding the incident fields at the antenra in the presence of the '




radome and the antenna. The incident fields at the antenna are
composed of two distinct parts: the fields passing directly through

the radome to the antenna and the fields that are scattered from

the various objects near the antenna including the radome, metal
tip, support structure and various feed structures on the antenna.

The second category implicitly includes multiple scattering between

any combination of the mentioned objects. An exact solution to the i
radome problem would consider all of these phenomena simultaneously

by obtaining a solution to the electromagnetic field equations that

would satisfy the boundary conditions at all surfaces of material 1
discontinuity. Such a problem could be formulated in terms of
integral equations for the tangential field components over a closed

surface surrounding the antenna. The complicated form of the boundary

conditions and the typically large electrical size of the structures
have made exact techniques intractable and approximate solutions
must be sought.

As previously mentioned, the response of a given antenna may
be determined from the incident fields. The importance of radome
effects should thus be ordered according to the influence on the
incident fields at the antenna and an approximate analysis will
consider only the most important of these effects. A primary
consideration is the effect of the radome wall on the part of the
incident field directly incident on the aperture. A well-designed
radome will be highly transparent and this component will constitute

by far the largest amount of energy incident on the aperture. Since




the radome wall is a curved surface with a transmission coefficient
that varies with angle of incidence and polarization, the effect of
the radome wa:1 on the direct wave will be attenuation, depolarization
and phase shift.

Of secondary priority is the incident field component that is
singly reflected from the internal radome wall. This component may
be quite significant at angles of incidence several degrees off bore-
sight where specular reflection from the radome wall into the aperture
is favorable.

Most airborne radomes designed fdr high-speed flight will be
equipped with a metal tip to increase the erosion resistance of the
radome. This tip is a source of indirect scatter at all angles of
incidence. The support structure behind the antenna proper is thought
to contribute 1ittle to the antenna voltage, since the feed is shielded
by the aperture and a well-designed feed will have 1ittle spillover at
the aperture. However, the structure behind the antenna can contribute
to scatter back to the radome and in turn to the aperture: multiple
scatter. Also multiple scatter can occur from the feed and its support
structure,

The emphasis of this study is on the analysis of existing
radomes as opposed to design of radomes having desired specifications.
Of primary interest is the prediction of the pointing error of a
monopulse radar operated in the radome. For the type radomes of
interest, the transmission properties of the radome wall and

refiection from the internal wall are considered to be the major




contributors to pointing error with the first predominating at small
gimbal angles and the latter at angles well off the radome axis.
Radar poiating error can be a significant limitation to the
accuracy of missile guidance systems. Also, the rate of change of }
pointing error with aspect angle, commonly called boresight error
slope, will influence the radar's measurement of target angular
velocity. The analysis performed in this work is directed toward

the prediction of these sources of error in order to determine their

impact on missile guidance and to evaluate methods for error compensa-
tion.

This work is organized to consider the fundamental elements of
radome, antenna, and radar analysis separately. This is done in the
following chapter. The third chapter contains an analysis of these
i items as a system with primary emphasis on prediction of angular

4 pointing errors. Methods to compensate for angular errors are the ;

topic of Chapter IV. ]




II. FUNDAMENTAL FACTORS IN
RADOME ANALYSIS

This chapter may be considered a survey of the basic information
needed for radome analysis. The approach taken here is to examine the
subsystems encountered in the radome-radar problem and some of the
models used to obtain tractable solutions to realistic problems. The
first section in this chapter deals with the theory of monopulse radar :
operating ideally without radome, signal distortion, or noise. The
second section introduces the radomes that will be considered in this
work. A discussion of tangent ogive geometry is presented. Next are
sections on the transmission and reflection properties of planar slabs
and the technique of ray tracing. These basic optical methods will be

used to model the local properties of the radome surface. The final p

section of this chapter discusses ray tracing which forms the basis

for the treatment of propagation within the radome.

MONOPULSE RADAR

Monopulse is a technique for obtaining target direction informa-
tion from a single radar return, hence the origin of the term. The
theory of monopulse operation is well known and discussed in many in-
troductory radar books such as Skolnik [13] and Barton [17]. The most
definitive treatment of the mathematical theory of monopulse and the

underlying principles is Rhodes early monograph [18]. A recent volume
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[19] edited by Barton contains reprints of many of the key papers on
monopulse and is recommended reading for anyone wishing a historical
perspective on the developments in this area.

This section is designed to serve as an introduction to mono-
pulse operation under ideal conditions and to form a foundation for
the later analysis of a monopulse system operating in an environment

containing a radome. In the main body of this work it will be shown

that, in general, a radome introduces spatial distortion into the
wavefront incident on the receiving antenna. This violates one of the
key assumptions concerning the received wave and is a source of radar
pointing error.

Fundamental to the theory of monopulse is the assumption that
the wave scattered from the radar target is a uniform plane wave over
the receiving antenna or that the antenna is in the far-field
of the target. When this assumption is satisfied the response of a
receiving antenna is completely described by its far-field antenna
pattern. The far-field antenna pattern of a radar antenna is easily
measured and analytic expressions for such patterns are not difficult
to obtain.

The first basic problem addressed in this study is the determi-
nation of a method to obtain the response of a monopulée system to a
non-planar non-uniform wave. This problem has been addressed in the
literature in studies on radar response to glint [20], multipath [21],
and unresolved targets [22]. The approach taken in each of these studies,

however, does not answer the basic question raised here. When analyzing
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the above-mentioned sources of a distorted wavefront, the approach taken
has been to decompose the target into smaller parts, each of which
scatters a wave that is uniform and planar at the receiving aperture.
Hence, the principle of superposition can be applied to obtain the mono-
pulse response in these environments. Treating a general wavefront as

a superposition of plane waves traveling in different directions is a
well-documented analytical technique, often known as plane-wave spectrum
analysis [23].

The resolution of a received wave that is distorted by a radome
into a plane-wave spectrum representation is a difficult problem and is
not justified if only the monopulse response is desired. Techniques
are presented in this section for obtaining the monopulse response
directly from the fields incident on the antenna, be they planar, dis-
torted, or whatever, However, a most elementary monopulse system in
the form of an interferometer is examined first. This provides an easy
way to visualize how monopulse works. Later, the receiving
properties of the more practical parabolic reflector antenna are pre-
sented.

Consider a receiving antenna system made up of two elements sepa-
rated by a distance D as shown in Figure 2-1. Assume a time-harmonic
plane wave traveling in free space is incident on the receiving ele-
ments. Here and throughout this work the time variation of all time-
varying quantities is assumed to be ej“t where j = V-1, w is the fre-

quency in rad/s, and t is the time in seconds. Furthermore, the time

variation will usually be suppressed and the conventions of ac circuit




sum
signal

A

difference
signal

v—-——-e

11
X
to target element 1 v
] +
KL —9
} >
Diﬁ
Ds2
+
front i L 4
gaement 2 V2
phase :
center
) LpFTi{?}
Phase-
LO AGC —¢ sensitive
detector
l!:& LPF 1
Figure 2-1. Interferometer Jdonopulse

System.




12

analysis, or phasor notation, will be employed. Thus the electric

field amplitude of the incident field, Ei, is given by

£l a E; ejk(x sing + y cose) (2.1)

where E; is the magnitude of the field, k is the propagation constant
given by 2«/x, x is the wavelength of the wave, and 6 is the incident
angle as indicated. The phase reference for the incident wave and the
antenna system is taken to be the origin.

Induced potentials that are proportional to the incident electric
field will exist across the terminals of the receiving elements. These

signals can be written as
D . 0
vy = v, ek sin (2.2)
at element 1 and

D,
= -jk3 sine

at element 2 where Vo is the voltage magnitude which is identical for
element 1 and 2.

The distinguishing feature of monopulse is the method of com-
bining V] and V2 so that the angle of incidence can be determined.
This is done by adding and substracting the antenna voltages to form
two new signals known as sum and difference signals. Thus the sum

signal, [, is given by

L=V + Y, (2.4)

-4
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and the difference signal, a, is given by
A= VI - VZ- (2.5)

The method of forming these signals is shown in Figure 2-1.
It is convenient to introduce a new variable to represent the
phase of V] and V2 as given in (2.2) and (2.3). The symbol, u, will

be used to denote this phase angle or,

u= k) sino = R sine ; (2.6)

where it is noted that u contains the element spacing normalized to
the wavelength. Using the variable u and substituting (2.2) and (2.3)

into (2.4) and (2.5), the sum and difference signals can be written

as

t~
]

v, eJl 4 v oetdv (2.7)

>
]

Ju iy
Vo & v e (2.8)

or by using Euler's identity,

&~
[}

2Vo cos(u) (2.9)

A= JV, sin(u) (2.10)

Signals V1 and V2 together with £ and A are conveniently'disp]ayed on a
phasor diagram as shown in Figure 2-2. It should be pointed out that
the choice of the origin as the phase center causes £ to be purely

real, and A is in phase quadrature with ¢.
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Figure 2-2. Phasor Diagram of Interferometer
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Incidence angle detection is accomplished by taking the real part

of the ratio of -ja to ] or,

-ja 2Vg sin(u)
= = 2.1
8a Re { 3 } 2 cos(a) tan(u) ( )

The ratio Re{-jA/Z} is known as the monopulse ratio and is the output
signal of the monopulse system. Figure 2-3 is a plot of the sum and
difference response and the monopulse ratio. For tracking radars, the
angle of incidence will be near the antenna axis, and thus u will be
small. Using the small angle approximation, tan(a)=a, and the

definition of u, equation (2-11) can be written as

Re (248 = y = ;—D sino . (2.12)

[

Again using a small angle approximation (sin(a) = a), (2.12) can be
solved for o,
1

6 = [f‘l]' Re {:%'A} . (2.13)

Thus, by measuring the monopulse ratio and multiplying by a constant,
the angle to the radar target may be determined. This information may
be fed to a gimbal system that repositions the antenna so that a moving
target's position is continually tracked.

Some comments are in order concerni:g this monopulse system.

First, the system will have zero output when the amplitude

and phase of the voltages at elements 1 and 2 are identical. If the
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phase of the signals at elements 1 and 2 are different, an output signal
is produced that is linearly (for small angles) related to the angle of
incidence of a plane wave that would prodice the element voltages. In
this respect the two-element intereferometer monopulse system is iden-
tical to the method used by Sims and Graf [24] for determining wave-
front distortion due to glint. Their method involved sampling the wave-
front at two points separated by a distance representing the receiving
aperture diameter and using the phase of the wave at these points to
make a linear approximation of the wavefront across the receiving
aperture. The angular difference between the normal to this wavefront
and the true angle to the target was then defined as the radar pointing
error due to glint.

Note also that the sign of the incidence angle is determined by
the phase of the difference channel with respect to the sum channel.
When the incidence angle is positive, A leads Z by 90° in phase, and
lags ZAby 90° when the incidence angle is negative. The phase-sensitive
detector shown in Figure 2-1 indicates the sign of the incidence angle
by measuring this phase relationship. One final comment concerning
monopulse systems is that incidence angle determination does not involve
the amplitude of the incident wave. This is because incident angle
determination occurs in the form of a ratio. Of course the signal
levels must be significantly above the noise level for reliable opera-

tion and this is assumed throughout.
Next the receiving properties of a monopulse system employing a para- 1

bolic reflector antenna are examined. The parabolic reflector is a commonly
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used antenna and has received considerable attention in the literature
[25, 26]. As previously mentioned, almost all antenna analysis treats
the transmitting situation and obtains the fields at points far removed
from the radiating structure. The receiving antenna has been treated
in general [27], but little attention has been given to the aperture
receiving antenna. The purpose of the remainder of this section is to
derive expressions for the response of a monopulse receiving antenna
excited by an arbitrary (non-planar, non-uniform, randomly polarized,
but time-harmonic) incident field. The results are applicable to all
aperture antennas.

The Lorentz reciprocity theorem will be employed to find the
receiving characteristics of the parabolic reflector antenna. In order
to use this theorem, the behavior of the antenna in the transmitting
mode must be known. This is most easily done through the use of the

equivalence principle, that is, by finding a set of sources which produce

"

the same fields as are produced by the antenna in the region of interest.

As will be seen, the equivalent sources play an important role in the

monopulse receiving system.

The parabolic reflector antenna system is composed of two princi-
pal parts, a feed antenna and a reflecting surface in the shape of a
paraboloid of revolution. As shown in Figure 2-4, the feed antenna,
the primary radiator, is located at the focus of the parabola. The
spherical wavefront leaving the feed antenna will be reflected at the

parabola and become a planar wavefront traveling paraliel to the

antenna axis.




Parabolic
Reflector

Figure 2-4. Parabolic Reflecter Antenna
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The planar circular area that is perpendicular to the antenna axis
and has its perimeter at the reflector's edge is called the aperture
plane. The fields over the aperture plane can be used to determine the
transmitting and receiving characteristics of the antenna. This is
shown first for the transmitting case where the fields produced by the
antenna in region z > 0 are to be found.

The region z > 0 is source free, so by the uniqueness theorem (28]

the fields in this region are uniquely related to the tangential field

components over a closed surface that contains the actual sources. It
is convenient to enclose the sources by the surface formed by the xy-
plane and a large hemisphere with center at the origin. The hemisphere
may be thought of as being of infinite radius or of finite radius but
large enough so that the fields over the hemisphere are negligible.
Thus the fields in the region z >0 are uniquely related to the tangen-
tial field components over the xy-plane.

The electric and magnetic field intensity produced by the antenna
will be denoted by E® and H?, and it will be assumed that B and A® are
zero in the region z < 0, that is; behind the reflector. This will
occur when the feed does not produce fields in this region (no spill-
over in the terms of antenna engineers), and when scattering from the
reflector edge is neglected. Thus, all the antenna fields in the Xy-
plane are confined to the aperture plane.

The equivalence principle [29] will next be used to further simplify

the antenna analysis. As guaranteed by the uniqueness theorem, the
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fields in the region z > 0 are now completely determined by the tangen-
tial field components in the aperture plane. According to the equiva-
lence principle, these same aperture fields may be supported by equiva-
lent surface currents, 32 and ﬁg, in the aperture plane, and all the

fields in the region z < 0 may be set to zero. The equivalent currents

are found from,

3;’ =nx® (2.18)
and
B2 =Fxn, (2.15)

where Ea and @ are the fields produced by the antenna and ﬁ is a unit
vector normal to the aperture plane as shown in Figure 2-4.

The equivalent surface currents given by (2.14) and (2.15) follow
from the electromagnetic boundary condition equations which state that
discontinuities in tangential field components are associated with surface-
current densities. At a smooth interface separating regions labeled

1 and 2 these equations are:

M = [E; - E,] « n, (2.17)

where subscripts 1 and 2 indicate the fields at the interface in region

1 and 2 respectively, E represents the electric field intensity, H the

magnetic field intensity, Js is the electric surface-current density, ﬁg

is the magnetic surface-current density, and n is a unit vector normal
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to the interface directed into region 1. Thus (2.16) states that elec-
tric surface-current densities are associated with discontinuities in
tangential magnetic fields and (2.17) states that magnetic surface-
current densities are associated with discontinuities in the tangen-

tial electric fields.

By choosing region 2 to be the region z < 0 and by setting all
the fields in this region to zero, (2.14) and (2.15) are seen to follow
from (2.16) and (2.17). The fields in the region z > 0 are the same
as before but now they are supported by the "equivalent currents", 3;
and ﬂg. Thus the entire problem of finding the antenna fields is reduced
to the problem of finding the fields of the currents given by (2.14) and
(2.15).

It should be noted that the above treatment of the reflector antenna
results in the same formulation as the classical optics problem of
diffraction from a circular aperture in a conducting screen. A1l such
aperture problems may be solved by the same method based on the equiva-
lence principle.

A comment concerning the anténna feed is in order before proceeding.
As seen in Figure 2-4, part of the field radiated by the feed will be
reflected back to the feed and interact with it. This is often referred
to as aperture blockage and may have a significant effect on the perfor-
mance of the antenna system, particularly when the size of the feed is
an appreciable part of the reflector size. Consideration of aperture
blockage is beyond the scope of this work and it will be assumed that
the antenna system can be represented completely by the equivalent

currents as previously discussed.
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There are several ways of determining the fields of the antenna
from the equivalent currents. These include direct integration, use of
potential functions, and the plane-wave-spe:trum technique. The fields
radiated by the antenna will not be found here since it is the antenna's
receiving properties that are of greatest interest. These receiving
characteristics can be derived from the Lorentz reciprocity theorem.

The Lorentz reciprocity theorem, which follows directly from
Maxwell's equations, is a way of relating two sets of sources and their

fields. An integral form of this theorem is given by [30],

ﬁ?-ub-n*‘-ﬁb)dwﬁib-ﬁ“-ﬁb-ﬁﬁ)dv (2.18)

vol vol

where superscripts indicate a set of sources and associated fields as
used previously, and the integrations extend over all space. Rumsey [31]
has given the name reaction to the relation between sources and fields
expressed by either side of (2.18). The recripocity theorem thus states
that the. reaction of the field a on source b is equal to the reaction of
the field b on the source a.

In order to apply (2.18) to the receiving antenna problem the a
source and field are chosen to be that of the equivalent currents
representing the parabolic reflector antenna and the b source is chosen

to be a point electric current element (dipole) given by,

P TP SRR (2.19)
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where Ug contains the magnitude and direction of the current element,
R' is a vector from the origin to the element's location, R is the posi-
tion vector (R = xx + y§ + zi). and § is the Dirac delta function. ﬁb
is set to zero.

Substituting (2.19) into the left-hand side of (2.18) and recog-
nizing the sampling property of the Dirac delta function yields,

/t"-:rbauﬁ-ﬁ-;)dv P.Jb (2.20)
vol 0 (o] R =R

If Ubb is chosen to have unit amplitude and to be in the direction of B
then (2.20) is simply the magnitude of the electric field at the point
dipole produced by the sources J° and °. From the right-hand side of
(2.18), it is seen that the magnitude of E? at R', as given by (2.20),
is equivalent to the reaction of the fields of the unit-amplitude dipole
on the equivalent currents of the parabolic antenna.

The behavior of a transmitting antenna at distances much greater
than the antenna dimensions (in the far-field) is completely charac-
terized by the electric field it radiates, due to the transverse nature
of the radiated fields. The far-field response of a transmitting anten-
na, defined as the magnitude of the electric field, is obtained from
(2.20) when [R'| is large. The response of the same antenna in the
receiving mode, defined as the open-circuit voltage at the antenna

terminals, is oroportional to the right-hanc side of (2.18) [31]. In

the remainder of this section the receiving-mode response of the para-

bolic antenna is discussed.
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The right-hand side of (2.18) can be rewritten using the aperture
fields as given by (2.14) and (2.15) yielding,

f!"-(nxﬁ‘)-ﬁ*’-(?xﬁ) ds, (2.21)
A |

where A indicates that the integration is only over the antenna aperture
since the a currents are zero everywhere else. Throughout this study

it is assumed that E® and H° are of constant phase and related like a
plane wave in the aperture. For a linearly polarized antenna B2 will
have the same direction over the aperture and i will also be uni-
directional and at right angles to B,

B

As an example, assume that in the aperture is given by,

B

[]
m
[}
><

(2.22)
and 72 is

7 - ]

"
X
< 1]
<
"
{
m
o
<

(2.23)

where zero subscripts indicate magnitude. The second part of (2.23)
is obtained from the plane-wave nature of E2 and ﬁa, and n is the intrin-
sic impedance of free space (n = /u/c). Figure 2-5(a) illustrates

these aperture fields,
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Substituting these a fields into (2.21) yields,

f—E" . (%ani) +B . (E2y) ds (2.24)
A

~

where the cross products have been evaluated for ﬁ =z,

an is common to both terms in (2.24) and can be factored to yield
fsoa [y - 18- 1. (2.25)

Thus it is seen that Eg acts as a weighting function for the integration.

Also, since Eg has constant phase, it can be assumed purely real. By
adjusting the variation of Eg over the aperture, various antenna pat-
terns may be obtained. In practice this is accomplished by design of
the antenna feed.

The importance of the form of Ez will be emphasized by giving it

the name aperture illumination function and using the symbol, g, for

this function. The monopulse sum and difference patterns are produced
by the proper aperture illumination functions. To see how this is
accomplished it is first necessary to find the antenna response to an

incident plane wave.

To obtain the antenna response, assume that a distant point dipole
produces a field which is incident on the aperture as in Figure 2-5(b).
This field, which is denoted by b, will be a uniform plane wave over

the aperture and can be written as,

jksinex -
b . Eob a

E (-cosex + sineé) (2.26)




(a) Aperture fields

—5(|§'§] 1)

"

=

(b) Plane wave incident on aperture

Figure 2-5. Fields of Parabolic Antenna and Sampling Source.




b .
E Jksinex 4
. 2. (y) (2.27)

where Eob is the magnitude of the electric field.

Substituting (2.26) and (2.27) into (2.25), performing the dot pro-
ducts, and using the symbol for the aperture illumination function
yields,

E® ., jksinex 2 26
fgf—n-*";Eo cos 8] e ds (2.28)

A
By removing the constants from the integral and making the substitution,

kx = k sins, (2.28) becomes,

Jk.x
—]n-Eob(l + cose)fg e X ds. (2.29)
A

l The integral in (2.29) is immediately recognized as a Fourier transform
of F and expresses a well-known relation between the aperture illumination
r function and the far-field antenna pattern.

The integration in (2.29) is most easily performed in circular

cylindrical coordinates for the circular aperture under discussion. Writing

the integral completely, (2.29) becomes,

- 2n D/2 jkxpcos¢

LeP 1+ cose) ff a(p,0) e odods,  (2.30)
0o o

9
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where the functional dependance of g is now shown and p and ¢ are the
coordinates indicated in Figure 2-5. In order to normalize this expres-
sion as was done for the interferometer, the following variable change

is introduced,
r=2/0 , (2.31)
us= E% sine. (2.32)

Using these variables, expression (2.30) is written
1 b 02 2r 1 jurcosé
. Eq (1 + coss) n f fg(m) e rdrde¢ (2.33)
o o
where g(r,¢) replaces g(p,¢) according to (2.31).

As with the interferometer, an aperture antenna used with a mono-
pulse system will have two far-field response patterns which are again
called the sum and difference patterns. These patterns are deter-
mined by the aperture illumination function. The sum pattern is an even
function of @ and the difference pattern is an odd function of 8. It
has been shown that the far-field pattern of the aperture involves the
Fourier transform of the aperture illumination function (2.29).
According to elementary Fourier transform theory [32], the transform of
an even function is even and the transform of an odd function is odd.
Thus the aperture illumination functions for the sum pattern will be

even, and the aperture illumination function for the difference pattern

will be an odd function of x.
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In this study two commonly used sum-pattern aperture illumination

functions will be considered. The first is uniform illumination, or

9(pd) =1, 0 <5 . (2.34)

This illumination is sometimes called ideal because it is constant to
the edge of the aperture but zero outside. It would be impossible to
create in practice due to the discontinuity in the fields at the
aperture edge.

The second sum illumination function is tapered from the center of
the aperture to the edge according to a cosine function,

9(p.9) = cos(®B) , o <D . (2.35)

The integral part of (2.33) is called the aperture pattern. It will
be shown that for large apertures the aperture pattern contains all the
significant variation of (2.33) with 8. The aperture patterns for the
two aperture illumination functions are shown in Figure 2-6. These
patterns are normalized to their respective maxima and are plotted in
dB versus u. It is noted that the tapered illumination function pro-
duces a wider main lobe but has lower side-lobe levels than the uniform
illumination. These aperture patterns could be obtained analytically,
by using a two-dimensional fast Fourier transform algorithm, or by
numerical integration. Figure 2-6 and the remaining figures in this
section were obtained using the numerical integration technique
that is used to find the response of the antenna with radome.

Figure 2-6 may be regarded as an "universal" aperture pattern since

the response for any size aperture, any wavelength, and any incidence
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angle can be looked up. This study is concerned with electrically
large apertures, and as an example an aperture with a diameter of 8 wave-
lengths will be used. The statement that :he aperture pattern contains
the significant angular variation of the antenna response is now justi-
fied. The response function given by (2.33) is the product of two
terms that vary with 8: the term (1 + cose) and the aperture pattern.
Figure 2-7 is a plot of these terms in dB versus incidence angle, 8.
Each curve is normalized to its maxima. It is seen that the term
(1 + cose) is only 3dB down at ¢ = 65° and a maximum of 6dB down at
90°, while the aperture pattern is greater than 30dB down for alil
angles greater than about 30°. Since the antenna response in dB is
the sum of these two terms, little error is introduced by ignoring
the (1 + cose) term,

A method'presented by Barton and Ward [33] will be used to obtain
the difference pattern illumination functions. They note that
the difference pattern of monopulse antennas resembles the derivative
of the sum pattern. If this relation is taken to be exact, the difference
illumination function, denoted by 940 is related to the sum illumination

function, g, by,

gd(xs.Y) = ‘Z‘E g(x,.Y) ’ (2.36)

where it is noted that 9% is the product of the sum illumination and
the linear odd function, x; LS is a constant. Since g is even, gy

is odd.
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Aperture with Uniform I1lumination and the Term (1 + cos ¢).
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The constant, Ls, is the effective aperture i]luminétion power

width in the terminology of [33] and is given by

Ak
!_-[(wa)2 la(x,y)|? ds '
L = A . ) (2.37)
[ 1axn? o
A
L -
For the case of uniform illumination in the circular aperture, Ls is

Dr/2, and for cosine tapered illumination (2.37) yields LS = 1.0718670.
When the difference illumination is defined by (2.36) with LS
given by (2.37), the sum and difference illumination functions contain

equal power. This would be expected in a well-designed monopulse
antenna.
Using (2.36) and the above constants, the difference illumination

for uniform sum illumination is,

D
99 * P<7; (2.38)

and for cosine illumination is,
5.861962X
9 =5 cos(E%) s P <% : (2.39)
where a mixed coordinate system is used for convenience.
The sum and difference illumination functions and the far-field

response function of an 8\ diameter aperture are shown in Figure 2-8

for uniform illumination, and in Figure 2- ) for cosine tapered illumina-

tion. The response functions are again normalized to the maximum of the

sum patterns, but are now shown with a linear ordinate scale.
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Monopulse angle detection is accomplished by connecting the sum and
difference outputs of the parabolic antenna to an angle detection circuit
as was shown in Figure 2-1. The angle of an incident plane wave, LY

is determined from the monopulse ratio, or
0; = K Re{:%é& (2.40)

where K is the slope of the normalized difference pattern evaluated at
8 = 0. For the case of uniform sum illumination, the value of K is given
by Barton and Ward to be 1.573 0/ for e,i measured in radians. For the
cosine-tapered illumination, K can be shown to be 1.475 D/x.

The incidence angle equations for the 8\ diameter aperture considered

in the example become,
6; = (12.585)") Re{:%é} , (2.41)
for the uniform illumination, and

oy = (11.800)7 Re3ldy (2.42)

for the cosine tapered illumination, where 8, is in radians. These two
equations and the methods outlined above will be used to find the indi-
cated target angle in the next chapter.

To conclude this summary of monopulse principles, it is pointed
out that the interferometer may be considered as an aperture illumination

function given by,

9=E s[IR- (50,011 , (2.43)
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since the interferometer samples the incident wave at the points (t%, 0, 0)
as described earlier. It is useful to keep this simple idea of wavefront

sampling in mind while considering the belavior of radomes.

TANGENT OGIVE RADOME GEOMETRY

The geometry and coordinate system of the tangent ogive radome are
discussed in this section. The tangent ogive is used for the radome
shape throughout this study because it weill represents the nose section
of high-speed missiles. For minimum drag the high-speed missile must
be highly streamlined. With proper Parameter selection, the ogive makes
a satisfactory shape for the missile nose.

The tangent ogive is a surface of revolution generated by the arc
of a circle as shown in Figure 2-10. The axis of the ogive is chosen
to be the y-axis, and the generating arc is centered on the z-axis in
order to obtain tangency along the contour where the ogive joins the
missile body. The radius of the ogive, p, may be expressed as a func-

tion of position along the axis, y, and the generating parameters by

p=yRE-y2 s ¥ g, (2.44)
2 ;

where R is the radius of the generating arc, and W is the base diameter.
A measure of an ogive's streamlining is the length-to-diameter ratio,
£/W. This ratio is encountered in aerodynamic studies where it was given

the name "fireness ratio". The greater th2 fineness ratio the more

streamlined is the ogive.
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Figure 2-10. Tangent Ogive Geometry.




It is convenient to express the length of the ogive generating arc
in terms of the fineness ratio and the ogive base diameter, W. This can
be done by considering the right triangle OTO' in Figure 2-10. The
sides of OTO' are related by,

R = 22 + [R - g&z . (2.45)

which can be solved for R yielding,

L W

R=WFH+E . (2.46)

This expression is useful for calculating R for an ogive with specific
fineness ratio and diameter.

The shape of the tangent ogive is sometimes specified by the para-
meter, caliber. The caliber, C, is defined as the ratio of the genera-

ting arc length to the base diameter or,
C=R/M (2.47;

In addition to knowing the ogive shape, the unit vector normal to
the ogive surface is required for the incidence angle calculations dis-
cussed later. It is most convenient to express this unit normal, ﬁ,

as a sum of three rectangular components, or

n=nx+ nyy +nz2 (2.48)




- B o R .

41

where n_, n_, n_ are the components of n in the coordinate directions

x* 'y’ 2z
X, ¥, and 2 respectively. These components can be found from geometri-
cal considerations, or by evaluating vf/|vf| with f given by the surface

equation. The component of n in the axial direction, ny, is given by

= .49
ﬂy y/R . (2.49)

The component of n perpendicular to §, N., is then found from the re-

quirement of unit magnitude, or

»

ne = 01 - 0715 (2.50)

and n, and n, are given by,

3
(]

x = e x/o (2.51)

=}
]

g=n. 2/ . (2.52)

The radomes considered in this study have uniform thickness and fill

the region between two concentric ogives. Thus a radome with thickness,

t, and an inner surface formed by an ogive with generating radius R, has

as an outer surface an ogive with generating radius (R + t).

TRANSMISSION AND REFLECTION PROPERTIES OF PLANAR DIELECTRIC SLABS

In this section the transmission and reflection coefficients for
plane waves incident on an infinite planar dielectric slab, or several
slabs sandwiched, are derived. Virtually all analyses of radomes have
used such plane-wave transmission coefficients to relate the electro-

magnetic field on opposite sides of a radome wall; and good results are
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obtained. The technique of modeling the radome wall is discussed in
the following section. Although transmission coefficients for planar
slabs have been presented in the literature in varying degrees of com-
pleteness and generality (Collin [34] being one of the better examples);
they are derived here in order to define the notation and demonstrate
the method of solution. The technique used here is similar to the

equivalent circuit approach used by Robinson [35].

The problem of transmission and reflection of a plane wave inci-
dent on a planar dielectric slab is an electromagnetic boundary condi-
tion problem. Transmission and reflection of an incident wave are
necessary results of the boundary conditions at surfaces of material
discontinuity. Complex transmission and reflection coefficients can
be used to express the fractions of the incident fields that are
respectively transmitted through and reflected from the dielectric
slab as well as giving the phase of these fields. The general equa-
tion for a plane wave is used to express all the fields.

Electromagnetic fislds in homogeneous, isotropic, time-invariant,

source-free regions satisfy the vector Helmholtz equation,
F-ue =5=0 (2.53)

where F is either the electric field intensity or the magnetic field

2

intensity, v< is the vector Laplacian operator, time dependence is

ejwt, u is the permeability of the medium, and e is the cbmp]ex permit-

tivity of the medium given by
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e = ¢(l - j tan §), (2.54)

with ¢ the permittivity and tan & the loss tangent of the medium
(tan § = g/we). The use of the complex permittivity in (2.53) accounts
for attenuation of the fields due to loss.
The solution to (2.53) for fields that vary in only one direction
(plane waves) may be written as,
- jkan er

F= Fo e s (2.55)

where 5n is a unit vector in the direction of wave motion; r = x; + y§ + zi;
k = mAJ;:z and Eo is a complex-vector constant representing the ampli-

tude, direction, and phase of E or H at the origin; and the time depen-
dence is suppressed.

It will be useful to define the vector E as L

k = k a, = kxx + kyy + kzz. (2.56)

This vector is in the direction of the Poynting vector and is sometimes

called the wave vector. The components of E must satisfy

2
Ky

2

2 _ 2.
+k Sk = e (2.57)

This relation provides a very convenient way to treat the boundary
condition problem of a plane wave incident on a planar dielectric slab.
The geonetry used for a dielectric slib which may be. located

between two dissimilar regions is shown in Figure 2-11. For the
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practical case of a single layer, the regions z < 0 and z > d will
contain the same material, usuvally air.

The fields in the various regions are classified according to
location and direction of travel as presented in Table 2-1. Super-

scripts identify each category.

Table 2-1
Classification of Dielectric Slab Fields

Name Location

Incident Fields z<0 £, 4
Positive Internal Fields 0<z<d Eu, WY
Negative Internal Fields 0<z<d Ev’ HY
Transmitted Fields z>d T
Reflected Fields z2<0 £, W

These classifications are straightforward but a comment is in

order concerning the internal fields. When a wave is incident at z = 0,

in general, there is a field transmitted through the interface at

angle 8. This field will travel to the z = d interface and be
partially reflected, return to z = 0 and again be partially reflected
and so on. The notation Eu and HY means the superposition of all fields
in the slab traveling in the generally positive z direction. A1l of
these fields will have the same wave vector, iu’ as will seen by Snell's
reflection law. Similarly EV and gv mean :the sums of all: fields travel-

ing in the generally negative z direction. These definitions are neces-

sary to solve the "steady-state" problem.
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Two orthogonal polarization states can be considered for the inci-
dent field. The polarization directions are with respect to the plane
of incidence: the plane containing the normal to the slab and Ei. Per-
pendicular polarization means Ei is perpendicular to the plane of inci-
dence, and parallel polarization means Eﬁ is contained in the plane of
incidence. An arbitrarily polarized incident field can be expressed as
a superposition of a parallel polarized Ei and a perpendicular polarized
E.

Parallel polarization will be considered first, then the transmis-
sion and reflection coefficients for perpendicular polarization will
be obtained using the principle of duality. The equations for the

parallel polarized plane waves listed in Table 2-1 are as follows:

£l = E; e-j(k;ry ' k;Z) (-cosei § + sine, 2) (2.58)
H =23 € e-j(k;'y *k?) (x) (2.59)
£’ = E; e-j(k;y ) ng) (-coser } - sing_ 2) (2.60)
H =270 € e-j(k;y " kg2 (-x) (2.61)
EY = e e-j(k;y tkpe) (-cose, y + sine z)  (2.62)
i =2y e e-J(k;y tkpe) (x) (2.63)
A Eov e-j(k;y ) kZVZ) (-:osev 9 - sinev_i) (2.64)
=2, €, e-j(k;’y " kp'2) (=x) (2.65)

|
|
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ot ot

- ~j(k'y + k_o(z-d)) R -

Ef-e" e y (-cose, y - sine, z) (2.66)
ot Lt

- - -j(kyy + k (z-d)) .

H =23 et e y (x) (2.67)

where the subscript, "o", indicates the quantity is a complex constant

th

and Zn is the intrinsic impedance of the n~ region as given by

[

Z =

n (2.68)

€
Zn is the ratio of transverse components of E and H in a uniform plane
wave traveling in the medium of the nth region. Note that the phase
reference of the transmitted fields is taken at (0,0,d).

Relations between the fields listed above are obtained from
boundary conditions (2.16) and (2.17). Since no surface currents will
be present on dielectric sheets, these boundary conditions reduce to

continuity of tangential fields or,

E

E H

H

£2 at z (2.69)

1]
o
-

t1 t2 t1

E

"

E

£2 £3 th = Ht3 atz=d , (2.70)

where the subscript t indicates total tangential field, and the number
refers to the region.

For parallel polarization (2.69) and (2.70) refer to the y- compo-
nents of E and the x-components of H. In terms of the field components

(2.70) can be written as
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SEEAEES l, « 4 (2.71)

X X X lz =d (2.72)

Substituting (2.62) - (2.67) into (2.71) and (2.72) yields

-i(k )y + k_“d) -3(kYy - k 'd)
u y z i v y z .
E° e ( coseu) + Eo e ( cosev)
.t
-jk,y
=gt Y
E° e ( coset) (2.73)
. u 7LV v
-1, u 'J(kyy thdl 'J(kyy “ k) e -kt
Z, E, e -2, E e =2 E e v

(2.78)
Equations (2.73) and (2.74) must hold for any y, given the follow-

ing relation,
kY=k"=kt (2.75)
which can be written in terms of the wave angles as

u _. T -t .
k™ sine, = k sine, = k sine,. (2.76)

Since kY equals kY (waves in the same medium), the first equality in
(2.76) expresses Snell's reflection law: angle of incidence equals
angle of reflection. The second equality in (2.76) is Snell's law of
refraction. The same relationship holds at the z = 0 boundary and can

be applied cosecutively for layered media.
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By taking advantage of (2.75), equation (2.73) and (2.74) can

be simplified to

-Jjw +jv
u v _ t
E° e cose, + E0 e cose, = Eo cose, (2.77)
| u -Jv v v S B
22 [Eo e - Eo e J-= 23 Eo (2.78)

where 8, and 8, have been replaced by 8, and where ¢ is given by

= (LY = (LY = LU
¥ (kz d) (kZ d) = k'd cose, . (2.79)
A matrix equation can be written to combine (2.77) and (2.78),
- . o I T
v v -3v dv u v ¢
e ; e chosez (e 5 e ) (Eo + Eo )cosez‘ E, cose,
-Jv jv  Ju ~Jv : -
e - e e +e - u v -
oEY .Y 2. E
Z.,cose, 2 "2 2 o 0 3 o
2 2
— — = — —-(2.80)—J
The use of hyperbolic functions allows this to be written as
— — _— —
R . . u v t
cosh(jy) -chosezs1nh(gw) (Eo + Eo )cose2 E° cos8,
-sinh . -1 u v -1 